Jury-Contestant Bipartite Competition Network: Identifying Biased Scores and Their Impact on Network Structure Inference

نویسندگان

  • Gyuhyeon Jeon
  • Juyong Park
چکیده

A common form of competition is one where judges grade contestants’ performances which are then compiled to determine the final ranking of the contestants. Unlike in another common form of competition where two contestants play a head-to-head match to produce a winner as in football or basketball, the objectivity of judges are prone to be questioned, potentially undermining the public’s trust in the fairness of the competition. In this work we show, by modeling the judge–contestant competition as a weighted bipartite network, how we can identify biased scores and measure their impact on our inference of the network structure. Analyzing the prestigious International Chopin Piano Competition of 2015 with a well-publicized scoring controversy as an example, we show that even a single statistically uncharacteristic score can be enough to gravely distort our inference of the community structure, demonstrating the importance of detecting and eliminating biases. In the process we also find that there does not exist a significant system-wide bias of the judges based on the the race of the contestants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subgame perfect implementation of the deserving winner of a competition with natural mechanisms

A jury has to decide the winner of a competition among a group of contestants. All members of the jury know who the deserving winner is, but this contestant is unknown to the planner. The social optimum is that the jury select the deserving winner. Each individual juror may be biased in favor (friend) or against (enemy) some contestant, and therefore her goal does not necessarily coincide with ...

متن کامل

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

Predicting Drug-Target Interactions via Within-Score and Between-Score

Network inference and local classification models have been shown to be useful in predicting newly potential drug-target interactions (DTIs) for assisting in drug discovery or drug repositioning. The idea is to represent drugs, targets, and their interactions as a bipartite network or an adjacent matrix. However, existing methods have not yet addressed appropriately several issues, such as the ...

متن کامل

Impact of Structural Components of Market on the Markup Level Based on Radial Basis Neural Network and Fuzzy Logic

This paper aims to evaluate the impact of several indices of market structure including entry to barrier, economies of scale and concentration degree on 140 active industries using the digit. Accordingly, we apply three methods including cost disadvantages ratio ( ), Herfindahl–Hirschman concentration index ( ) and Comanor and Willson criterion in order to assess the economies of scale and usin...

متن کامل

Suppliers Selection in Consideration of Risks by a Neural Network

Faced with the dynamic demands of a changing market, companies are facing fierce competition, which forces them to consider more and more new approaches to improve quality, reduce costs, produce on time, control their risks and remain successful in the face of any disruption. It is clear that the choice of appropriate suppliers is one of the key factors in increasing the competitiveness of comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1608.02326  شماره 

صفحات  -

تاریخ انتشار 2016